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9.9 Representation of Functions by Power Series

JOSEPH FOURIER (1768-1830)

Some of the early work in
representing functions by power
series was done by the French
mathematician Joseph Fourier.
Fourier’s work is important in the
history of calculus, partly because
it forced eighteenth-century
mathematicians to question the
then-prevailing narrow concept
of a function. Both Cauchy and
Dirichlet were motivated by
Fourier’s work with series, and

in 1837 Dirichlet published the
general definition of a function
that is used today.

8 Find a geometric power series that represents a function.
8 Construct a power series using series operations.

Geometric Power Series

In this section and the next, you will study several techniques for finding a power series
that represents a function. Consider the function
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The form of f closely resembles the sum of a geometric series
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In other words, when a = 1 and r = x, a power series representation for 1/(1 — x),

centered at 0, is
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Of course, this series represents f(x) = 1/(1 — x) only on the interval (—1, 1),
whereas f is defined for all x # 1, as shown in Figure 9.22. To represent f in another
interval, you must develop a different series. For instance, to obtain the power series
centered at — 1, you could write

1 1 B 1/2 _a
l-x 2—-(x+1) 1-[x+D/2] 1-r

which implies that ¢ = % and r = (x + 1)/2. So, for |x + 1] < 2, you have
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:%[1 +(x"2‘1)+(x21)2+(x—;1)3

+] lx+ 1] <2

which converges on the interval (=3, 1).
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fx) = ﬁ , Domain: all x # 1 ‘ ‘f(x) =I§: x", Domain: —1 <x< 1
Figure 9.22
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658 Chapter 9 Infinite Series

Long Division

1
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EXAMPLE 1 Finding a Geometric Power Series Centered at 0

Find a power series for f(x) = , centered at 0.

4
x+2
Solution Writing f(x) in the form a/(1 — r) produces

4 2 _a
24+x 1 —(=x/2) 1-r

which implies that @ = 2 and

4 =)
= ar”
x+2 nz()
o0 xn
‘;02(_2)
x  x2 X
=2(1-S+=—-"+
2(1 2 4 8 >

which implies that the interval of convergence is (—2, 2). ™ |

Another way to determine a power series for a rational function such as the one in
Example 1 is to use long division. For instance, by dividing 2 + x into 4, you obtain the
result shown at the left.

EXAMPLE 2 Finding a Geometric Power Series Centered at 1

1
Find a power series for f(x) = —, centered at 1.
X

Solution Writing f(x) in the form a/(1 — r) produces

1_ 1 _a
x 1l—(—x+1) 1-r
which implies that ¢ = 1 and » = 1 — x = —(x — 1). So, the power series for f(x) is
1 =)
=3 ar
X n=0
=S -
n=0

i:‘,o(— 1y — 1y
- +x—=12=@—1P3+- -

This power series converges when
x—1] <1

which implies that the interval of convergence is (0, 2). |
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9.9 Representation of Functions by Power Series 659

Operations with Power Series

The versatility of geometric power series will be shown later in this section, following
a discussion of power series operations. These operations, used with differentiation and
integration, provide a means of developing power series for a variety of elementary
functions. (For simplicity, the operations are stated for a series centered at 0.)

Operations with Power Series

Let f(x) = i a,x" and g(x) = i b,x".
n=0 n=0

Lk = S a ke

n=0
2. f(xN) = i a,x"™N
300 g =S (@, + b

n=0

The operations described above can change the interval of convergence for the
resulting series. For example, in the addition shown below, the interval of convergence
for the sum is the intersection of the intervals of convergence of the two original series.
[e’s) [ee} x\" [e’s) 1

x" + = 1+ —x"

S+ 56/ -502)

n=0

— NS —
(L1 n (=2,2) = (=1,1)

Adding Two Power Series

Find a power series for

3x— 1
fo) =5

centered at 0.
Solution Using partial fractions, you can write f(x) as

3x — 1 2 1
= + :
2—-1 x+1 x-—1

By adding the two geometric power series

xil_l—(x) 22(_1)nn’ el <1

and

1 —1 &
x—lzl—x:_Zoxn’ <1

you obtain the power series shown below.

3x—1 =S
FeamralD N P Gl Vi B
n=0
=1—-3x+x2—3x3+x*—
The interval of convergence for this power series is (— 1, 1). |
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Infinite Series

EXAMPLE 4 Finding a Power Series by Integration

Find a power series for

flx) =Inx

centered at 1.

Solution From Example 2, you know that
1 =)
- = (=1 — 1 Interval of convergence: (0, 2)
x 0

n=

Integrating this series produces

lnx=f1dx+C
X

=) ()C _ l)n+l
=C+ — 1)
¢ nzo( D n+1
By letting x = 1, you can conclude that C = 0. Therefore,
I SN C el Vi
lnx—nzo( 1) pa——
:(x_1)_(x_1)2+(x_1)3_(x_1)4+‘ . Interval of
1 2 3 4 ' convergence: (0, 2]

Note that the series converges at x = 2. This is consistent with the observation in the
preceding section that integration of a power series may alter the convergence at the
endpoints of the interval of convergence. |

B FOR FURTHER INFORMATION To read about finding a power series using
integration by parts, see the article “Integration by Parts and Infinite Series” by Shelby
J. Kilmer in Mathematics Magazine. To view this article, go to MathArticles.com.

In Section 9.7, Example 4, the fourth-degree Taylor polynomial for the natural
logarithmic function
G- =D (1)

Inx=(x—1) — 5 + 3 ,

was used to approximate In(1.1).
1 1 1
~ _ 1L 24 L 3 L1
In(1.1) = (0.1) 5 0.1)> + 3 (0.1) 4(0.1)
~ (0.0953083

You now know from Example 4 in this section that this polynomial represents the first
four terms of the power series for Inx. Moreover, using the Alternating Series
Remainder, you can determine that the error in this approximation is less than

|R4| = |a5|
_Laons
= 5(0.1)
= 0.000002.

During the seventeenth and eighteenth centuries, mathematical tables for logarithms
and values of other transcendental functions were computed in this manner. Such
numerical techniques are far from outdated, because it is precisely by such means that
many modern calculating devices are programmed to evaluate transcendental functions.
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SRINIVASA RAMANUJAN (1887-1920)

Series that can be used to
approximate 7 have interested
mathematicians for the past

300 years. An amazing series for
approximating | /7 was discovered
by the Indian mathematician
Srinivasa Ramanujan in 1914 (see
Exercise 61). Each successive term
of Ramanujan’s series adds roughly
eight more correct digits to the
value of 1/7. For more
information about Ramanujan’s
work, see the article “Ramanujan
and Pi” by Jonathan M. Borwein
and Peter B. Borwein in Scientific
American.

See LarsonCalculus.com to read
more of this biography.

i FOR FURTHER INFORMATION
To read about other methods for
approximating 7, see the article
“Two Methods for Approximating
7 by Chien-Lih Hwang in
Mathematics Magazine. To view

this article, go to MathArticles.com.

9.9 Representation of Functions by Power Series

EXAMPLE 5 Finding a Power Series by Integration

cees > See LarsonCalculus.com for an interactive version of this type of example.
Find a power series for

g(x) = arctan x
centered at 0.

Solution Because D [arctan x] = 1/(1 + x?), you can use the series
S (x) = E (= 1) Interval of convergence: (—1, 1)

Substituting x? for x produces

— i (_ 1)")62".

n=0

) =
Finally, by integrating, you obtain

1
= -
arctan x f T+ x sdx + C

2n+l
=C+ 1y
2 (=1 2n + 1
) 2n+1
= -1 Letx = 0, then C = 0.
n:() 2n + 1
L A Interval of (—1,1)
=X — — - — ot nterval of convergence: (— 1,
35 7 ¢
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It can be shown that the power series developed for arctan x in Example 5 also

converges (to arctan x) for x = £ 1. For instance, when x = 1, you can write

arctanl =1 — - + +-

W | —
W | —
| =

™

1

However, this series (developed by James Gregory in 1671) does not give us a
practical way of approximating 7 because it converges so slowly that hundreds of terms
would have to be used to obtain reasonable accuracy. Example 6 shows how to use two
different arctangent series to obtain a very good approximation of 7 using only a few

terms. This approximation was developed by John Machin in 1706.

EXAMPLE 6 Approximating = with a Series

Use the trigonometric identity

arctan 5 arctan 239 4

to approximate the number 7 [see Exercise 46(b)].

Solution By using only five terms from each of the series for arctan(1/5) and

arctan(1/239), you obtain

1 1
4(4 arctan — 5 — arctan 239> ~ 3.1415926

which agrees with the exact value of 7r with an error of less than 0.0000001.
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662 Chapter 9 Infinite Series

9.9 Exercises

see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Finding a Geometric Power Series In Exercises 1-4,
find a geometric power series for the function, centered at 0,
(a) by the technique shown in Examples 1 and 2 and (b) by long
division.

1. f(x) = 2. flx) =

- X 2+ x

1 4 =

7 = 5

+ x

L f() = Inx + 1) = ﬁdx

22.f(x)=ln(1*x2)=JA1+xdx*JA11xdx

23. glx) =

— 2
e 24. f(x) = In(x> + 1)
25. h(x) = ﬁ 26. f(x) = arctan 2x

Finding a Power Series In Exercises 5-16, find a power £ Graphical and Numerical Analysis In Exercises 27

series for the function, centered at ¢, and determine the interval
of convergence.

2
5. flx) = < c=1 6.f(x)—6_x c= -2
7.f(x)=]_3x, c=0 8. h(x) = o c=0
9.g(x)=ﬁ, c= -3
3
10. f(x) = T c=2
3
11.f(x)=3x+4, c=0
4
12.f(x):m, c=3
4x
Beg)=gip—s <=0
3x — 8
s =3 s €70
2
15.f(x)=m, c=0
5
16.f(x)=5+x2, c=0

Using a Power Series In Exercises 17-26, use the power
series

1 +x Z —1)a

to determine a power series, centered at 0, for the function.
Identify the interval of convergence.

-2 _ 1 . 1
2—1 1+x 1—x

X 1 1
18, h(x) = 57— = - =

1 2(1 +x)
1 d 1
19. 1) = CEE - a[x + 1]

0. fx) = (xfl)3=5722[x41r 1]

17. h(x) =

and 28, let
x2 x3 Xt x"
S =x—f+*—f+---i;.

Use a graphing utility to confirm the inequality graphically.
Then complete the table to confirm the inequality numerically.

x 00| 02|04 06|08/ 10

S,

n

In(x + 1)

Sn+1

27. 8, < In(x + 1) < S, 28. 5, < In(x + 1) < S

Approximating a Sum In Exercises 29 and 30, (a) graph
several partial sums of the series, (b) find the sum of the series
and its radius of convergence, (c) use 50 terms of the series to
approximate the sum when x = 0.5, and (d) determine what
the approximation represents and how good the approximation is.

(—l)"“(x — 1)” ( 1)" 2n+1

29. ) n 30. E 2n + 1)!

T8

Approximating a Value In Exercises 31-34, use the series
for f(x) = arctan x to approximate the value, using R, < 0.001.

| 3/4
31. arctan 1 32. f arctan x2 dx
0
1/2 2 1/2
t
33. f % dx 34, f x2arctan x dx
0 0

Using a Power Series In Exercises 35-38, use the power
series

Ex, [x] < 1.

l—x “=h

Find the series representation of the function and determine its
interval of convergence.

1

3. /00 = 7= O =0=% x)z
3160 = 38. f()—H
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39. Probability A fair coin is tossed repeatedly. The probability 51 S — & L]
) v . (-1) . 52. ) (1)
that the first head occurs on the nth toss is P(n) = (5) . When =l S'n H=0 2n+1
this game is repeated many times, the average number of 53 * 1y 1
tosses required until the first head occurs is . ;::0 (=1) 22+1(2n + 1)
% & 1
E(n) = nzl nP(n). 54. nzl (=1 32120 — 1)
(This value is called the expected value of n.) Use the results
of Exercises 35-38 to find E(n). Is the answer what you WRITING ABOUT CONCEPTS
expected? Why or why not? 55. Using Series One of the series in Exercises 49-54

f converges to its sum at a much lower rate than the other

Exercises 35-38 to find the sum of each series. five series. Which is it? Explain why this series converges
L& [2\n 1 = 9 \n so slowly. Use a graphing utility to illustrate the rate of
S bl - ~ convergence.

2) 3,; "<3> ®) 75,2, "(10)

56. Radius of Convergence The radius of convergence

40. Finding the Sum of a Series Use the results of

Writing In Exercises 41-44, explain how to use the geometric of the power series i a,x" is 3. What is the radius of
series n=0
= convergence of the series na,x"~'? Explain.
g6 =y, = S Ixl <1 2
X n=0 H .
57. Convergence of a Power Series The power series
to find the series for the function. Do not find the series. x
> a,x" converges for [x+ 1| < 4. What can you
1 n=0
41 42. = =) n+1
() = I +x f®) 1 —x2 conclude about the series 2 a, ;_i_ 1? Explain.
n=0
5
3. f0) = 4. f(x) = In(1 — x)
45. Proof P h %
> o0 rove that % HOW DO YOU SEE IT? The graphs show
x+ty first-, second-, and third-degree polynomial

arctan x + arctan y = arctan . .
I —xy approximations P, P,, and P; of a function f.

Label the graphs of P, P,, and P5. To print an

for xy # 1 provided the value of the left side of the equation is enlareed copy of the graph, g0 to MathGraphs.com.

between — /2 and /2.

46. Verifying an ldentity Use the result of Exercise 45 to ;
verify each identity. Al
(a) rtng—rtnizz 37‘7
Yaretal g T Aty T
2 L
1 1
(b) 4 arctan 57 arctan 239 % 1 + ;
[Hint: Use Exercise 45 twice to find 4 arctan é Then use part ‘ —h—t+—1+—>=x
().] 1 2\\\3 4
Approximating Pi In Exercises 47 and 48, (a) verify the
given equation, and (b) use the equation and the series for the Finding the Sum of a Series In Exercises 59 and 60, find
arctangent to approximate 77 to two-decimal-place accuracy. the sum of the series.
1 1 =« — 1) g2t
47. 2 arctan — — arctan - = — -z 7
2 74 » 5 Tt v @ 3 S
1 1 rdp' i i
48. arctan ) + arctan 372 61. Ramanulan and Pi  Use a graphing utility to show that
- . & (4n)!(1103 + 26,390 |
Finding the Sum of a Series In Exercises 49—54, find the 2 ) = n_1
. . . 9801 = (n!)396% T
sum of the convergent series by using a well-known function.
Identify the function and explain how you obtained the sum. 62. Find the Error Describe why the statement is incorrect.
19. S ( 50. 3 (
n=1 n=1
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